

Week 3 - Friday

COMP 2230

Last time

- Rational numbers
- Divisibility

Questions?

Assignment 1

Logical warmup

- Two women are sitting in a street cafe, talking about their children.
- One says she has three daughters. The product of their ages is 36, and the sum of their ages is the number of the house across the street.
- The second woman replies that this information is not enough to figure out the age of each child.
- The first agrees and adds that her oldest daughter has beautiful blue eyes.
- Then the second solves the puzzle.
- What are the ages of the daughters?

Divisibility

Unique factorization theorem

- For any integer $n > 1$, there exist a positive integer k , distinct prime numbers p_1, p_2, \dots, p_k , and positive integers e_1, e_2, \dots, e_k such that

$$n = p_1^{e_1} p_2^{e_2} p_3^{e_3} \cdots p_k^{e_k}$$

- And any other expression of n as a product of prime numbers is identical to this except, perhaps, for the order in which the factors are written

Proof by Cases

Proof by cases

- If you have a premise consisting of clauses that are ANDed together, you can split them up
 - Each clause can be used in your proof
- What if clauses are ORed together?
- You don't know for sure that they're all true
- In this situation, you use a proof by cases
- Assume each of the individual possibilities is true separately
- If the proof works out in all possible cases, it still holds

Proof by cases formatting

- For a direct proof using cases, follow the same format that you normally would
- When you reach your cases, number them clearly
- Show that you have proved the conclusion for each case
- Finally, after your cases, state that, since you have shown the conclusion is true for all possible cases, the conclusion must be true in general

Quotient-remainder theorem

- For any integer n and any positive integer d , there exist unique integers q and r such that
 - $n = dq + r$ and $0 \leq r < d$
- This is a fancy way of saying that you can divide an integer by another integer and get a unique **quotient** and **remainder**
- We will use **div** to mean integer division (exactly like `/` in Java)
- We will use **mod** to mean integer mod (exactly like `%` in Java)
- What are q and r when $n = 54$ and $d = 4$?

Consecutive integers have opposite parity

- Prove that, given any two consecutive integers, one is even and the other is odd
- **Hint:** Divide into two cases:
 - The smaller of the two integers is even
 - The smaller of the two integers is odd

Another proof by cases

- Theorem: for all integers n , $3n^2 + n + 14$ is even
- How could we prove this using cases?
- Be careful with formatting

Indirect Proof

Proof by contradiction

- The most common form of indirect proof is a proof by contradiction
- In such a proof, you begin by assuming the negation of the conclusion
- Then, you show that doing so leads to a logical impossibility
- Thus, the assumption must be false and the conclusion true

Contradiction formatting

- A proof by contradiction is different from a direct proof because you are **trying** to get to a point where things don't make sense
- You should always mark such proofs clearly
- Start your proof with the words **Proof by contradiction**
- Write **Negation of conclusion** as the justification for the negated conclusion
- Clearly mark the line when you have both p and $\sim p$ as a **contradiction**
- Finally, state the conclusion with its justification as the contradiction found before

Example

- **Theorem:** There is no largest integer.
- **Proof by contradiction:** Assume that there is a largest integer.

Another example

- **Theorem:** There is no integer that is both even and odd.
- **Proof by contradiction:** Assume that there is an integer that is both even and odd

Another example

- **Theorem:** $\forall x, y \in \mathbb{Z}^+, x^2 - y^2 \neq 1$
- **Proof by contradiction:** Assume there is such a pair of integers

Two Classic Results

Square root of 2 is irrational

Theorem: $\sqrt{2}$ is irrational

Proof by contradiction:

1. Suppose $\sqrt{2}$ is rational	1. Negation of conclusion
2. $\sqrt{2} = m/n$, where $m, n \in \mathbb{Z}$, $n \neq 0$ and m and n have no common factors	2. Definition of rational
3. $2 = m^2/n^2$	3. Squaring both sides
4. $2n^2 = m^2$	4. Transitivity
5. $2k = m^2$, $k \in \mathbb{Z}$	5. Square of integer is integer
6. $m = 2a$, $a \in \mathbb{Z}$	6. Even x^2 implies even x (Proposition 4.7.4)
7. $2n^2 = (2a)^2 = 4a^2$	7. Substitution
8. $n^2 = 2a^2$	8. Transitivity
9. $n = 2b$, $b \in \mathbb{Z}$	9. Even x^2 implies even x
10. $2 m$ and $2 n$	10. Conjunction of 6 and 9, contradiction
11. $\sqrt{2}$ is irrational	11. By contradiction in 10, supposition is false

■

Proposition 4.7.3

Claim: $\forall a, p \in \mathbb{Z} \ p \text{ is prime} \wedge p \mid a \rightarrow p \nmid a + 1$
Proof by contradiction:

1. Suppose $\exists a, p \in \mathbb{Z}$ such that p is prime $\wedge p \mid a \wedge p \mid a + 1$	1. Negation of conclusion
2. $a = p \cdot r, r \in \mathbb{Z}$	2. Definition of divides
3. $a + 1 = p \cdot s, s \in \mathbb{Z}$	3. Definition of divides
4. $(a + 1) - a = 1$	4. Subtraction
5. $p \cdot s - p \cdot r = 1$	5. Substitution
6. $p(s - r) = 1$	6. Distributive law
7. $p \mid 1$	7. Definition of divides
8. $p \leq 1$	8. Since 1 and -1 are the only integers that divide 1
9. $p > 1$	9. Definition of prime
10. Contradiction	10. Statements 8 and 9 are negations of each other
11. $\forall a, p \in \mathbb{Z} \ p \text{ is prime} \wedge p \mid a \rightarrow p \nmid a + 1$	11. By contradiction at statement 10

Infinitude of primes

Theorem: There are an infinite number of primes

Proof by contradiction:

1. Suppose there is a finite list of all primes:

$$p_1, p_2, p_3, \dots, p_n$$

2. Let $N = p_1 p_2 p_3 \dots p_n + 1, N \in \mathbb{Z}$

3. $p_k \mid N$ where p_k is a prime

4. $p_k \mid p_1 p_2 p_3 \dots p_n + 1$

5. $p_1 p_2 p_3 \dots p_n = p_k (p_1 p_2 p_3 \dots p_{k-1} p_{k+1} \dots p_n)$

6. $p_1 p_2 p_3 \dots p_n = p_k P, P \in \mathbb{Z}$

7. $p_k \mid p_1 p_2 p_3 \dots p_n$

8. p_k does not divide $p_1 p_2 p_3 \dots p_n + 1$

9. p_k does and does not divide $p_1 p_2 p_3 \dots p_n + 1$

10. There are an infinite number of primes

1. Negation of conclusion

2. Product and sum of integers is an integer

3. Theorem 4.4.4

4. Substitution

5. Commutativity

6. Product of integers is integer

7. Definition of divides

8. Proposition from last slide

9. Conjunction of 4 and 8, **contradiction**

10. By contradiction in 9, supposition is false

A few notes about indirect proof

- Don't combine direct proofs and indirect proofs
- You're either looking for a contradiction or not
- Proving the contrapositive directly is equivalent to a proof by contradiction

Upcoming

Next time...

- Exam 1!

Reminders

- **Finish Assignment 1**
 - Due tonight by midnight!
- Review for Exam 1
 - Next Monday!